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We derive general properties of anomalous diffusion and nonexponential relaxation from the theory of
tempered �-stable processes. The tempering results in the existence of all moments of operational time. The
subordination by the inverse tempered �-stable process provides diffusion �relaxation� that occupies an inter-
mediate place between subdiffusion �Cole-Cole law� and normal diffusion �exponential law�. Here we obtain
explicitly the Fokker-Planck equation and the Cole-Davidson relaxation function. This model includes subdif-
fusion as a particular case.
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I. INTRODUCTION

Many studies have been reported on the phenomenon of
subdiffusion which is typically observed when, due to domi-
nating influence of traps �see �1–3� and references therein�,
the waiting times of random walks become � stable, ��1,
with an infinite mean. However, this picture is only an ide-
alization of the physical world. In reality the time of trap life
can be restricted. It should be taken into account that the
traps can be located in some spatial regions from which a
walker may easily escape. Consequently, in a more general
representation, the random walks start as subdiffusion, but
their characteristics become very similar to those of normal
diffusion at large time scales. One of such clear examples is
a random motion of bright points �BPs� associated with mag-
netic fields at the solar photosphere. The BPs transport in the
intergranular lanes with times less than 20 min has a subdif-
fusive character, but the analysis of the BPs motion supports
the normal diffusion behavior for larger times. The experi-
mental result is reported in �4�. The anomalous diffusion at
short times and normal at long times was also noticed in
�5,6� for molecules diffusing in living cells. The experiments
cover extremely large time scales �more than 5 decades� and
different experimental conditions. Then the subdiffusive re-
gimes can cover up to 3 decades.

The present paper is just devoted to such a problem. For
this purpose we are going to apply the tempered �-stable
processes for the description of diffusion and relaxation. In
comparison with the purely �-stable process such a process
has finite moments, but it saves some important rudiments of
the stable process too �7–9�. Therefore if its inverse process
is taken as a subordinator, it provides then a diffusive picture

occupying an intermediate place between subdiffusion and
normal diffusion. We begin with a description of the tem-
pered �-stable process and its inverse. This allows one to
build a subordinated process responsible for anomalous dif-
fusion and nonexponential relaxation. Then we study their
properties following from the subordinator features.

It should be noted that our methods and results differ from
the earlier interesting investigations presented in �10,11�.
These studies do not include the tempered �-stable inverse
subordinator and their results give opposite asymptotic prop-
erties for subdiffusion. To develop a particle tracking solu-
tion to the movement of passive tracers in heterogeneous
media, a tempered model has been considered recently in
�12� to capture the slow convergence of subdiffusion to a
diffusion limit. However, the model is only asymptotically
equivalent to ours as t→0 or t→�.

II. CONTINUOUS TIME RANDOM WALKS AND
SUBORDINATION

The model of subdiffusion is based on a flexible Montroll-
Weiss idea on continuous time random walks �CTRWs� �13�.
Briefly, the representation of anomalous diffusion by means
of the CTRWs methodology is the following �see �14–16��.
Consider a sequence Ti, i=1,2 , . . ., of non-negative, indepen-
dent, identically distributed �IID� random variables which
represent waiting-time intervals between subsequent jumps
of a walker. The random time interval of n jumps in space
equals T�n�=�i=1

n Ti with T�0�=0. The random number Nt of
jumps, performed by the walker up to time t�0, is deter-
mined by the largest index n for which the sum of n inter-
jump time intervals does not exceed the observation time t,
namely Nt=max�n :T�n�� t�. The position of the walker after
the random number Nt of jumps, performed by the walker up
to time t�0, becomes then
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R�Nt� = �
i=1

Nt

Ri,

where Ri are IID variables giving both the length and the
direction of the ith jump. The process R�Nt� is just known as
the CTRW. In a more general case the variables Ri can be
multidimensional vectors.

If the time intervals Ti belong to the domain of attraction
of a completely asymmetric �-stable distribution with the
index 0���1, the generalization of the central limit theo-

rem yields the continuous limit a−1/�T��a���→
d

U� as a→�,
where U� is a strictly increasing �-stable Lévy process, a

�0 parameter, �x� denotes the integer part of x, and “→
d

”
means “tends in distribution.” Similarly, let the jumps Ri be-
long to the domain of attraction of a �-stable distribution

S�,��x� ,0���2, ����1 so that a−1/�R��a���→
d

X� as a→�,
where X� is a �-stable Lévy process known as the parent
process. If �=2, the parent process is the classical Brownian
motion. Both the process U� and the process X� are indexed
by random operational �internal� time �. In order to find a
particle position at the observable time t, we have to intro-
duce the notion of the inverse-time �-stable subordinator St
relating the internal and the observable times,

a−�Nat→
d

St = inf��:U� � t� �1�

as a→�. Then, as a→�, the continuous limit of the CTRW
process R�Nt� obtains the following form:

a−�/�R�Nat� 	 �a��−1/�R��a�St��→
d

X�St� , �2�

known as the anomalous diffusion process �14�, directed by
the inverse �-stable subordinator St. It should be pointed out
that the process U� does not have any finite p moments for
p��. Therefore the subdiffusion is characterized by a power
mean-square displacement in time �15–17�.

III. TEMPERED �-STABLE PROCESS AND ITS INVERSE

However, there are physical phenomena, for example, the
random motion of BPs in intergranular lanes on the Sun,
where it would be desirable to get also a model that over-
comes the infinite-moment difficulty while preserving the
subdiffusive behavior for short times �18�. The remedy was
first proposed in the physical literature by Mantegna and
Stanley �19�. Their idea of truncated Lévy flights served as a
model for random phenomena which exhibit at small scales
properties similar to those of Lévy flights, but have distribu-
tions which at large scales have cutoffs and thus have finite
moments of any order. Koponen �20�, building on Mantegna
and Stanley’s ideas, defined the smoothly truncated Lévy
flights which stressed the advantage of a nice analytic form.
Independently, the same family of distributions was de-
scribed earlier by Hougaard �21� in the context of a biologi-
cal application. However, different methods for the trunca-
tion were suggested also in the economic and statistical

sciences �22–24�, but until Rosiński’s paper �7� there was a
lack of invariance under linear transformations for the distri-
butions introduced, a significant property that the �-stable
laws possess. He succeeded in finding the appropriate class
of tempered stable distributions and processes �9,24�.

Motivated by �8� we discuss properties of a diffusion pro-
cess which is related to an inverse tempered �-stable subor-
dinator. The Laplace image for the probability density func-
tion �PDF� of a tempered non-negative �-stable variable is

f̃�u� = exp�	� − �u + 	��� , �3�

where 	 is a positive constant and 0���1 �8�. If 	 equals
zero, the tempered �-stable PDF becomes simply �-stable.
Equation �3� describes probabilistic properties of the tem-
pered �-stable Lévy process U��� which generalizes the
above-mentioned process U�.

Next, we will find its inverse process S�t� as in Eq. �1�,
where U��� substitutes U�. If f�t ,�� is the PDF of U���, then
the PDF g�� , t� of its inverse S�t� can be represented as

g��,t� = −
�

��



−�

t

f�t�,��dt�.

Taking the Laplace transform of g�� , t� with respect to t, we
get

g̃��,u� =
�u + 	�� − 	�

u
e−���u + 	��−	��. �4�

When u
1 �t�1� or 	→0, Eq. �4� tends to

g̃��,u� = u�−1e−�u�
, �5�

which is the Laplace image of an inverse �-stable PDF typi-
cal for subdiffusion. If u�1 �t
1� or �→1, then Eq. �4�
becomes the Laplace image of the Dirac delta function. It
follows from Eq. �5� that the PDF of the inverse �-stable
process is

g��,t� =
1

2�i



Br
eut−�u�

u�−1du = t−�F���/t�� ,

where Br denotes the Bromwich path, and the function F��z�
has a Taylor series expansion

F��z� = �
k=0

�
�− z�k

k!�1 − � − k��
.

For more details see �15,25�. It should be recalled that this
function is a specific case of the Wright function

W�a,b;z� =
1

2�i



H

es+zs−a
s−bds ,

where H denotes the Hankel path with a cut along the nega-
tive real semiaxis around zero �26�. The latter plays a key
role in derivation of g�� , t� for 	�0.

Using general properties of the Laplace transform
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0

t

q�t��dt�→
L 1

s
Q�s�, e−ath�t�→

L
H�s + a� ,

Eq. �4� can be expressed in terms of the Wright functions,
namely

g��,t� = e�	�

0

t

�W�− �,− �;�/x��x−�−1

− 	2W�− �,0;�/x��/x�e−	xdx .

This description generalizes continuous time random walks
of anomalous diffusion in the case when the subordinator is
an inverse tempered �-stable process. To derive properties of
the process X�S�t�� we should assume more detailed features
of the process X���.

IV. SUBORDINATION BY AN INVERSE TEMPERED
�-STABLE PROCESS

If now the independent identically distributed random
space jumps X1, X2 , . . . have either Gaussian or Lévy distri-
bution, then formally we can pass from the discrete represen-
tation to the continuous limit in the form of the stochastic
process X��� depending on the internal time �. Let the parent
process X��� have the PDF h�x ,��. Then the PDF of the
subordinated process X�S�t�� obeys the integral relationship
between the probability densities of the parent and directing
processes, X��� and S�t�, respectively,

p�x,t� = 

0

�

h�x,��g��,t�d� . �6�

In fact, this relation connects the probability to find a particle
at x on the operational time � with the probability for the
operational time � to be equal to real time t. In the Laplace
space the probability density p�x , t� has the most simple
form. Based on the form, it is easy to calculate all the mo-
ments of p�x , t�. Taking into account Eq. �4�, the Laplace
transform of Eq. �6� with respect to t gives

p̃�x,u� =
�u + 	�� − 	�

u
h̃�x,�u + 	�� − 	�� . �7�

For 	=0 the latter expression becomes u�−1h̃�x ,u��.
If the moments of the process X��� are known, it is not

difficult to find the moments of the process X�S�t��. For ex-
ample, for the Gaussian process ��=2� the second moment is
�X2����=D�, where D is a diffusive constant. Then the mean-
square displacement of X�S�t�� can be written as

�X2�S�t��� = 

0

�

�X2����g��,t�d� .

The Laplace image �X̃u
2� of �X2�S�t��� has the form

�X̃u
2� =

D

u��u + 	�� − 	��
. �8�

Consequently, using properties of the Laplace transform and
after simple algebraic transformations, the inverse Laplace
transform of Eq. �8� reads

1

u��u + 	�� − 	��
→
L−1


0

t

e−	yy�−1E�,��	�y��dy , �9�

where

E�,��z� = �
k=0

�

zk/��k + ��, � � 0, � � 0

is the Mittag-Leffler function �25�. The function �9� gives
rise to interesting asymptotic properties of the mean-square
displacement �X2�S�t���. For t�1 this displacement behaves
as Dt� /��+1�, but for t
1 it increases linearly in time
Dt /� �see Fig. 1�. Thus the anomalous diffusion, governed
by the inverse tempered �-stable subordinator, occupies an
intermediate place between subdiffusion and the normal dif-
fusion. For short times it behaves as subdiffusion whereas for
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FIG. 1. �Color online� Mean-square displacement of anomalous
diffusion subordinated by an inverse tempered �-stable process.
Observed already in �8� for �=0.5.

−15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p
(x

,t
)

t = 0.1
t = 1
t = 3
t = 10

FIG. 2. �Color online� Propagator p�x , t� for the tempered
Gaussian diffusion with a constant potential, �=2 /3 and 	=0.5,
drawn for consecutive dimensionless instances of time t=0.1, 1, 3,
and 10. The cusp shape of the PDF disappears.
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the long times it resembles the properties of the normal dif-
fusion. Let us call the diffusion subordinated by the inverse
tempered �-stable process a “tempered subdiffusion.” As is
well known �11�, the inverse �-stable process accounts for
the amount of time when a walker does not participate in a
motion. If the walker only randomly moves all time ��=1�,
the internal time � coincides with the physical time t. By
analogy, we may conclude that the process S�t� for the tem-
pered subdiffusion represents a case when a walker does not
participate in a motion only for restricted intervals of time.
At large time scales the walker begins to move randomly
without any stopping as if �=1.

V. EQUATION OF TEMPERED SUBDIFFUSION

Let L̂�x� be a time-independent Fokker-Planck operator,
whose exact form is not important here. Let the ordinary
Fokker-Planck equation �FPE�,

�h�x,��/�� = L̂�x�h�x,�� ,

describe evolution of a particle subject to the operation time

�. Acting by the operator L̂�x� on the image p̃�x ,u� from Eq.
�7�, we find

L̂�x�p̃�u,x� = ��u + 	�� − 	��p̃�x,u� − q�x�
��u + 	�� − 	��

u
,

�10�

where q�x� is an initial condition. When 	=0, the inverse
Laplace transform of the latter expression gives a fractional
representation of the FPE �1,15�,

p�x,t� = q�x� +
1

���
0

t

d��t − ���−1L̂�x�p�x,�� . �11�

In the case of the tempered subdiffusion the kernel in the
integral representation of the FPE will be more complex,

containing as a special case the kernel of Eq. �11� for 	
→0. Using the formal integral representation �27� of the
FPE,

p�x,t� = q�x� + 

0

t

d�M�t − ��L̂�x�p�x,�� , �12�

and taking the inverse Laplace transform of Eq. �10�, we
obtain the explicit form of the kernel M�t�, namely

M�t� = e−	tt�−1E�,��	�t�� . �13�

For t�1 �or 	→0� this function takes the power form
t� /��� as the kernel in Eq. �11�. However, for t
1 �or �
→1� M�t� becomes constant and, as a result, Eq. �12� trans-
forms into the integral form of the ordinary FPE.

In Fig. 2, as an example, the propagator p�x , t� for the
tempered diffusion with �=2 /3 and 	=0.5 is drawn. The
cusp shape of the PDF disappears when time increases.
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FIG. 4. �Color online� Frequency-domain relaxation function
����=�����− i����� with different values 	 for �=0.5.
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VI. TEMPERED RELAXATION

The commonly accepted theoretical approaches to model
relaxation phenomena assume �1� decay of an excitation un-
dergoing diffusion in the system under consideration. In this
framework, the relaxation function ��t� describes the tempo-
ral decay of a given mode k and can be expressed �16�
through the Fourier transform of the diffusion process
X�S�t��,

��t� = �e−kX�S�t��� . �14�

Here k�0 has the physical meaning of a wave number �the
Fourier image of spatial coordinates�. Starting with Eq. �4�,
we can write the Laplace image of Eq. �14� as

�̃�u� =
��u + 	�� − 	��

u���k� + �u + 	�� − 	��
, �15�

where ��k� is the logarithm of the characteristic function of
the process X���.

To expose the characteristic properties of the “tempered
relaxation” we use the frequency-domain description �28,29�
of the relaxation phenomenon

���� = 

0

�

e−i�t−
d��t�

dt
�dt . �16�

Then, for the relaxation under the inverse tempered �-stable
process the function �16� takes the form

���� =
1

1 − �� + �i�/�p + ��� , �17�

where 0���� is a constant, and �p is the characteristic
frequency of the relaxing system. The value � is proportional
to 	.

The above frequency-domain relaxation function for �
=0 recovers the Cole-Cole law. If �=1, the dependence �17�
becomes Debye’s. In the case of �=1 it has the Cole-
Davidson form. The relaxation directed by the inverse tem-
pered �-stable process just takes an intermediate place be-
tween the superslow relaxation and the exponential one �see
Fig. 3�. Such a type of evolution is observed in relaxation
experiments �see, for example, �28��.

Let us mention that for any positive ��0 the absorption
�imaginary� term of the frequency-domain relaxation func-
tion ����=�����− i����� behaves as ���������−1� /�p for
� /�p�� and �������p

� sin��� /2� /�� for � /�p
�. If �
=0, the value ����� tends to �� for � /�p�1 and �−� for
� /�p
1. The evolution of the frequency-domain relaxation
function ���� under different 	 is presented in Fig. 4. Note
that the shift of ����� in the low frequency range depends on
	�−1.

For t�1 the relaxation function ��t�, corresponding to the
Cole-Cole law, decreases in its initial stage as a power 1
− t� /��+1�. In the case of t
1 and any positive 	�0 the
function ��t� tends to an exponential law � exp�−	1−�t�. The
relaxation function demonstrates clearly something interme-
diate in its evolution between the power-law decay and the
exponential one.

VII. CONCLUSIONS

In summary we have developed an approach to anoma-
lous diffusion and nonexponential relaxation from tempered
�-stable processes. The model is broader than the purely
subdiffusive case. It is very important that they both can be
considered on the unique base following the theory of sub-
ordinated random processes. We have derived a tempered
form �Eqs. �12� and �13�� of the FPE and we have calculated
the mean-square displacement �Eqs. �8� and �9�� of anoma-
lous diffusion subordinated by an inverse tempered �-stable
process. Using the formal integral representation of the tem-
pered FPE and taking the inverse Laplace transform of Eq.
�10�, we have obtained the explicit form of the kernel M�t�.
Moreover, we have found the explicit form of the tempered
relaxation function �17�.

The cusp shape �characteristic for the subdiffusion� of the
PDF of the tempered diffusion process disappears with time;
see Fig. 2. Thus our model occupies an intermediate place
between subdiffusion and normal diffusion. We expect that
our results will yield insights into the coexistence of subdif-
fusion and normal diffusion in nature.
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